Upper Bounds for the length of s - Extremal Codes over F 2 , F 4 , and F 2 + u F 2

نویسندگان

  • Sunghyu Han
  • Jon-Lark Kim
چکیده

Our purpose is to find an upper bound for the length of s-extremal codes over F2 (resp. F4) when d ≡ 2 (mod 4) (resp. d odd). This question is left open in [6], [2]. More precisely, we show that there is no s-extremal binary code of length n ≥ 21d− 82 if d > 6 and d ≡ 2 (mod 4). Similarly we show that there is no s-extremal additive F4 code of length n ≥ 13d− 26 if d > 1 and d is odd. We also define s-extremal self-dual codes over F2 + uF2 and derive an upper bound for the length of an s-extremal self-dual code over F2 + uF2 using the information on binary s-extremal codes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclic Codes and Self-Dual Codes Over F2 + uF2

We introduce linear cyclic codes over the ring F 2 + uF 2 = f0; 1; u; u = u + 1g, where u 2 = 0. This ring shares many properties of Z 4 and F 4 and admits a linear "Gray map". Cyclic codes are described as modules over (F 2 + uF 2) n which may not be free. Self-dual codes of odd length exists as in the case of Z 4-codes. We exhibit some extremal codes of this very interesting family.

متن کامل

Isotropic Constant Dimension Subspace Codes

 In network code setting, a constant dimension code is a set of k-dimensional subspaces of F nq . If F_q n is a nondegenerated symlectic vector space with bilinear form f, an isotropic subspace U of F n q is a subspace that for all x, y ∈ U, f(x, y) = 0. We introduce isotropic subspace codes simply as a set of isotropic subspaces and show how the isotropic property use in decoding process, then...

متن کامل

A general upper bound in extremal theory of sequences

We investigate the extremal function f(u; n) which, for a given nite sequence u over k symbols, is de ned as the maximum length m of a sequence v = a1a2:::am of integers such that 1) 1 ai n, 2) ai = aj ; i 6= j implies ji jj k and 3) v contains no subsequence of the type u. We prove that f(u; n) is very near to be linear in n for any xed u of length greater than 4, namely that f(u; n) = O(n2 (n...

متن کامل

Co-Roman domination in trees

Abstract: Let G=(V,E) be a graph and let f:V(G)→{0,1,2} be a function‎. ‎A vertex v is protected with respect to f‎, ‎if f(v)>0 or f(v)=0 and v is adjacent to a vertex of positive weight‎. ‎The function f is a co-Roman dominating function‎, ‎abbreviated CRDF if‎: ‎(i) every vertex in V is protected‎, ‎and (ii) each u∈V with positive weight has a neighbor v∈V with f(v)=0 such that the func...

متن کامل

Bounds on the restrained Roman domination number of a graph

A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007